$$
\begin{aligned}
s_{x}^{2}= & \frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}{N-1} \\
s_{x y}= & \frac{\sum_{i=1}^{N}\left\{\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)\right\}}{N-1} \\
r_{x y}= & \frac{s_{x y}}{s_{x} s_{y}} \\
\mu= & \sum_{x} x f(x) \\
\sigma^{2}= & \sum_{x}(x-\mu)^{2} f(x) \\
\sigma^{2}= & E\left(X^{2}\right)-[E(X)]^{2} \\
P(A \mid B)= & \frac{P(A \cap B)}{P(B)} \\
A \cap B)= & P(A \mid B) P(B) \\
& B \cap A \\
& ?{ }^{\text {approx }}{ }^{\text {approx }} \sim\left(p, \frac{p(1-p)}{N}\right) \\
& \left.\bar{X} \pm \frac{\sigma^{2}}{N}\right) \\
& \bar{X} \pm t_{\alpha / 2} \times \frac{s}{\sqrt{N}}
\end{aligned}
$$

$z_{\alpha / 2}$ is the value such that $P\left(Z>z_{\alpha / 2}\right)=\alpha / 2$
z_{α} is the value such that $P\left(Z>z_{\alpha}\right)=\alpha$
$t_{\alpha / 2}$ is the value such that $P\left(T>t_{\alpha / 2}\right)=\alpha / 2$
t_{α} is the value such that $P\left(T>t_{\alpha}\right)=\alpha$

The followings are for ? distribution:

$$
\begin{aligned}
f(x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \\
E(X) & =n p \\
\operatorname{Var}(X) & =n p(1-p) \\
\binom{n}{x} & =\frac{n!}{x!(n-x)!} \\
0! & =1 \\
n! & =1 \times 2 \times 3 \times \ldots \times n
\end{aligned}
$$

The following is for ? distribution:

$$
f(x)=\frac{\mu^{x} e^{-\mu}}{x!}
$$

The following is for ? distribution:

$$
\begin{aligned}
f(x) & = \begin{cases}\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { otherwise }\end{cases} \\
\operatorname{Var}(X) & =\frac{(b-a)^{2}}{12}
\end{aligned}
$$

The following is for ? distribution:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(\frac{1}{2}\right) \frac{(x-\mu)^{2}}{\sigma^{2}}}
$$

The following is for ? distribution:

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\left(\frac{1}{2}\right) z^{2}}
$$

