$$
\begin{aligned}
I Q R & =Q_{3}-Q_{1} \\
Q_{1} & \text { is the } 25 \text { th percentile } \\
Q_{3} & \text { is the } 75 \text { th percentile } \\
s_{x}^{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
s_{x y} & =\frac{\sum_{i=1}^{n}\left\{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right\}}{n-1} \\
r_{x y} & =\frac{s_{x y}}{s_{x} s_{y}} \\
C_{k}^{N} & =\frac{N!}{k!(N-k)!} \\
P_{k}^{N} & =\frac{N!}{(N-k)!} \\
N! & =1 \times 2 \times 3 \times \ldots \times(N-1) \times N \\
0! & =1 \\
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
P(A \cap B) & =P(A \mid B) P(B) \\
A \cap B & =B \cap A \\
A \cup B & =B \cup A
\end{aligned}
$$

There are two below requirements for something (where e_{i} is something):

$$
\begin{align*}
0 & \leq P\left(e_{i}\right) \tag{1}
\end{align*}=1, ~=P\left(e_{n}\right)=1 ~ \$
$$

