BNAD 276 Lecture 5 Discrete Probability Distributions

Phuong Ho

May 22, 2017

1/71

Outline

- 2 Discrete Probability Distributions
- Expected Value, Variance, and Standard Deviation
- Some Special Discrete Distn's

Outline

- 2 Discrete Probability Distributions
- 3 Expected Value, Variance, and Standard Deviation
- 4 Some Special Discrete Distn's

Example 1

- Let's begin with an example.
- Suppose we conduct the experiment of tossing a coin.
- Possible outcomes in this experiment are either *H* or *T*.
- We want to work with numbers instead of alphabet letter, *H* or *T*, when we describe an outcome from this experiment.
- We assign a number for each outcome as follows.

$$X = \begin{cases} 0 & \text{if the outcome is } H \\ 1 & \text{if the outcome is } T \end{cases}$$

• *X* in the above is an example of random variables.

Random Variables

The "formal" definition of random variable is as follows.

Random Variables

A **random variable** is a **numerical description** of the outcome of an experiment.

- Recall that a specific outcome is randomly realized when we conduct an experiment.
- Note that a value of a random variable is necessarily associated with an outcome in an experiment.
- So, the value of the random variable is determined based on the realized outcome of the experiment.

Notations

- We use a capital letter to denote a random variable, (e.g. X).
- We use a lowercase letter to denote values that a random variable can take, (e.g. *x*).
- e.g. Previously we have a random variable *X* which associates *H* to 1 and *T* to 0.
 - Note that, in this example, our random variable is denoted by *X*.
 - Possible values that *X* can take are denoted by x = 0, 1.

- An outcome, *H* or *T*, is randomly realized.
- If an outcome *H* is realized, we decided to record *X* = 1 instead of *H*.
- Because the value that *X* takes depends on the realized outcome and an outcome is randomly realized, the value of *X* is also randomly realized.
- Hence, *X* is called a random variable.

Example 2

- Sometimes, an outcome is a number by itself.
- Consider the experiment of rolling a die.
- The sample space of this experiment is

$$S = \{1, 2, 3, 4, 5, 6\}$$

• We can define our random variable *X* as follows.

X = An outcome in the experiment

• Since the outcome is already a number, *X* is of course a numerical description of the outcome, which fits the definition we had.

Example 3 (1/3)

- In the previous examples, we have a straightforward way to obtain a random variable. However, it is not always straightforward.
- And, we may be interested in only some aspect of the outcome in the experiment.

Suppose we conduct an experiment of tossing a coin three times.

• The sample space will be

 $S = \{(\textit{HHH}), (\textit{HHT}), (\textit{HTH}), (\textit{HTT}), (\textit{THH}), (\textit{THT}), (\textit{TTH}), (\textit{TTT})\}$

• Now, define our random variable X as follows.

X = The number of Heads in an outcome.

Note that X is a numerical description of an outcome since X will be either 0,1,2 or 3.

Example 3 cont'd (2/3)

We can summarize *X* as follows:

 $X = \begin{cases} 0 & \text{The outcome is } (TTT) \\ 1 & \text{The outcome is either } (HTT), (THT), \text{ or } (TTH) \\ 2 & \text{The outcome is either } (HHT), (THH) \text{ or } (HTH) \\ 3 & \text{The outcome is } (HHH) \end{cases}$

Example 3 cont'd (3/4)

We can define a different random variable Y:

$$Y =$$
 The number of tails in an outcome

$$Y = \begin{cases} 3 & \text{The outcome is } (TTT) \\ 2 & \text{The outcome is either } (HTT), (THT), \text{ or } (TTH) \\ 1 & \text{The outcome is either } (HHT), (THH) \text{ or } (HTH) \\ 0 & \text{The outcome is } (HHH) \end{cases}$$

Example 3 cont'd (4/4)

We can define another different random variable Z:

Z = The number of heads in the last two tossing times of an outcome

$$\begin{bmatrix} 0 & \text{The outcome is } (TTT) \text{ or } (HTT) \end{bmatrix}$$

- $Z = \begin{cases} 1 & \text{The outcome is either } (HHT), (HTH), (THT), \text{ or } (TTH) \\ 2 & \text{The outcome is either } (THH) \text{ or } (HHH) \end{cases}$

 - Hence, an experiment generates one sample space but there may be multiple random variables depending on what we are interested in.

Discrete Random Variable

- The examples we considered so far has a common characteristics.
- In every example, the values that *X* can take are *discrete*.
- e.g. 1 *X* only can take values such as 0,1,2, or 3 in the previous example.

Discrete Random Variable

Discrete random variable is a random variable that takes a finite number of values, or an infinite sequence of integer values such as 0, 1, 2, ...

Examples of discrete RVs

Experiment	Random Variable (X)	Possible Values for X
Contact	Number of customers	0,1,2,3,4,5
five customers	who place an order	
Inspect 50 radios	Number of defective radios	0,1,2,3,,50
Operate	Number of customers	0,1,2,3,
a restaurant one day		
Sell an automobile		
to someone	Gender of the customer	0 if male, 1 if felmale

Continuous Random Variables

- Some experimental outcomes have non-discrete values.
- e.g. An experimental outcome such as time, weight, distance, and temperature can take any value in an interval.

Experiment	Weigh a parcel in a USPS store
Random Variable	Temperature
Possible Values	0 < x

- Note that X (the weight) can take any positive values, for example 1lb, 2.3lbs
- When a random variable exhibits this property, we call it a Continuous Random Variable.

Summary

- A random variable is a numerical description of the outcome in an experiment.
- A random variable is called
 - Discrete Random Variable when it only takes clearly separated values such as 0,1,2,3,...
 - Continuous Random Variable when it can takes any values in an interval.
- In this lecture note, we are going to learn probability theory of a discrete random variable. In the next lecture note (LN6), we will learn the continuous one.

Outline

2 Discrete Probability Distributions

3 Expected Value, Variance, and Standard Deviation

4 Some Special Discrete Distn's

- We only restrict our attention on discrete random variables in this section.
- We will talk about Discrete Probability Distribution and Discrete Probability Function.

Example 1

- Recall the experiment of tossing a coin 3 times.
- The sample space for this experiment is

 $S = \{(\textit{HHH}), (\textit{HHT}), (\textit{HTH}), (\textit{HTT}), (\textit{THH}), (\textit{THT}), (\textit{TTH}), (\textit{TTT})\}$

Following the classical method of assigning probabilities, we have

$$P(HHH) = P(HHT) = \cdots = P(TTT) = \frac{1}{8}$$

Now, define discrete random variable X as the number of heads. i.e.
 X=the number of H in the outcome

- Then, X is summarized as follows before
 - $X = \begin{cases} 0 & \text{The outcome is } (TTT) \\ 1 & \text{The outcome is either } (HTT), (THT), \text{ or } (TTH) \\ 2 & \text{The outcome is either } (HHT), (THH) \text{ or } (HTH) \\ 3 & \text{The outcome is } (HHH) \end{cases}$
- Now, ask the probability that X = 0,
- It is the same question as "What is the probability that (TTT) happens?"
- The answer is simply 1/8 based on the probabilities that we assigned.

- What is the probability that X = 1?
- It is the same question as "What is the probability that either (*HTT*), (*THT*) or (*TTH*) happens?"
- Note that if (*HTT*) happens, neither of (*THT*) or (*TTH*) happens.
- They are mutually exclusive. Thus, we merely sum up probability of (*HTT*), (*THT*) and (*TTH*).
- Finally, the probability that X = 1 is $\frac{3}{8}$.

- We can do the same procedure for X = 2, 3.
- Now define f(x) is the function that shows the probability that X = x, where x = 0, 1, 2, 3.
- Finally we have the following.

$$f(x) = \begin{cases} \frac{1}{8} & \text{if } x = 0\\ \frac{3}{8} & \text{if } x = 1\\ \frac{3}{8} & \text{if } x = 2\\ \frac{1}{8} & \text{if } x = 3 \end{cases}$$

• The above function is called the probability function and probability distribution is determined by the probability function *f*(*x*).

Discrete Probability Distributions

 The probability distribution for a random variable describes how probabilities are distributed over the values of the random variables.

Discrete probability function

A probability function, f(x), for a discrete random variable X is defined by

f(x) = Prob(X = x), x is the possible values of X

• The probability function *f*(*x*) for a **discrete** random variable *X* is also called a "**pmf**", i.e. **probability mass function**.

Remarks

- Example of tossing a coin 3 times illustrates that probability function is closely related to the fundamental experiments and the probabilities of outcomes in an experiments.
- 2 Probability function f(x) of a discrete random variable is the function that gives us the probability that X = x.
- e.g. If 1, 2, 3 are the possible values of *X*, small *x*s are 1,2, or 3. And, f(x = 1) is the probability that *X* takes 1 among the possible values, 1,2, or 3.
 - Probability distribution is the description of how probabilities are distributed over the possible values of a random variable. It is described by *f*(*x*) for all points *x*.

Two requirements for a discrete probability function

- Remind that *f*(*x*) is the **probability** that *X* is equal to *x*.
- At the end of the day, f(x) is a probability. Thus, it should satisfy the two requirements for probability.

Two Requirements for Discrete Probability Functions

$$0 \le f(x) \le 1$$
, for all x

$$\sum_{x} f(x) = 1$$

 The range of all values x at which f(x) > 0 is called the support of the random variable X (or of f(x)).

Example 2

Suppose we have a discrete random variable, *X*, and the probability function for *X*, f(x), as follows.

$$f(x) = x/15, \quad x = 1, 2, 3, 4, 5$$

- We don't know what the underlying experiment and sample space for *X* but we still can check whether the above probability function is valid.
- Is f(x) between 0 and 1?
- Is $\sum f(x)$ is equal to 1?

- Furthermore, we can answer to the questions such as
 - What is Prob(X = 1)?
 - Recall that f(x) = Prob(X = x). The above question asks Prob(X = 1). By definition, we know Prob(X = 1) = f(1).
 - Thus, $Prob(X = 1) = f(1) = \frac{1}{15}$.
 - What is Prob(X = 5)?.
- Once we know the underlying experiment and what *X* means, we can give the appropriate interpretation on Prob(X = 1).

- Once we know probability function, we can also calculate probabilities such as *Prob*(*X* ≤ *x*).
- What is $Prob(X \le 3)$?
 - We know that the possible values that *X* can take is 1,2,3,4, or 5.
 - Thus, $Prob(X \le 3) = Prob(X = 1 \text{ or } X = 2 \text{ or } X = 3)$.
 - It becomes Prob(X = 1) + Prob(X = 2) + Prob(X = 3) since X = 1, X = 2 and X = 3 are mutually exclusive.
 - Finally, we have

$$Prob(X \le 3) = Prob(X = 1) + Prob(X = 2) + Prob(X = 3)$$

= $f(1) + f(2) + f(3)$
= $\frac{1}{15} + \frac{2}{15} + \frac{3}{15} = \frac{6}{15}$

28/71

Cumulative Distribution Function

Discrete Cumulative Distribution Function

The **cumulative distribution function CDF**, or the cumulative probability distribution, $F(x_0)$, of a discrete random variable, X, represents the probability that X does not exceed a specific value x_0 . That is,

$$F(x_0) = Prob(X \le x_0) = \sum_{x \le x_0} f(x).$$

- e.g In the previous slide, we had $Prob(X \le 3) = Prob(X = 1) + Prob(X = 2) + Prob(X = 3).$
 - It can be written as $F(3) = Prob(X \le 3) = \sum_{x \le 3} f(x) = f(1) + f(2) + f(3).$

Example: Cumulative Distribution Function

 Once we have a probability distribution of X, it directly determines the cumulative probability distribution of X.

• We had
$$f(x) = x/15$$
, $x = 1, 2, 3, 4, 5$.

Random Variable	Probability Distribution	Cumulative Probability Distribution
X	f(x)	F(x)
x = 1	f(1) = 1/15	$F(1) = Prob(X \le 1) = 1/15$
x = 2	f(2) = 2/15	$F(2) = Prob(X \le 2) = 1/15 + 2/15 = 3/15$
x = 3	f(3) = 3/15	$F(3) = Prob(X \le 3) = 1/15 + 2/15 + 3/15 = 6/15$
x = 4	f(4) = 4/15	$F(4) = Prob(X \le 4) = 10/15$
x = 5	f(5) = 5/15	$F(5) = Prob(X \le 5) = 15/15 = 1$

Exercise 1

Suppose we have the probability distribution for the random variable *X* as follows.

X	f(x)
20	.20
25	.15
30	.25
35	.40

- Is this probability distribution valid? Explain.
- What is the probability that X = 30.
- What is the probability that X is less than or equal to 25?
- What is the probability that X is greater than 30?

Outline

2 Discrete Probability Distributions

Expected Value, Variance, and Standard Deviation

4 Some Special Discrete Distn's

- Recall that we measure the central location and variability of data by sample mean and sample variance.
- A random variable *X* possibly takes many different values, thus it also has central location and variability measures.
- A measure of central location of a **random variable** *X* is **EXPECTED VALUE** (or "TRUE" MEAN).
- A measure of variability of a **random variable** *X* is **VARIANCE** (or "TRUE" VARIANCE).

Expected Value ("True" Mean)

• Once we know the possible values *x* of a random variable *X* and the probability mass function of *X*, we can calculate the expected value, or **the mean**, of a random variable *X*.

Expected Value of a Discrete Random Variable

$$E(X) = \mu = \sum_{x} xf(x)$$

• Intuitively, it makes sense since each value x is weighted by the "relative frequency" that can become the probability of the event X = x.

Example 1.Calculate Expected Value/Mean

Suppose we have the following probability distribution for *X*.

X	f(x)
0	0.1
1	0.4
2	0.3
3	0.2

$$E(X) = \mu = \sum_{x} xf(x)$$

= 0 \cdot f(0) + 1 \cdot f(1) + 2 \cdot f(2) + 3 \cdot f(3)
= 0 + 0.4 + 0.6 + 0.6 = 1.6

Variance

 Since the random variable X can take many possible values x, we also have a measure of the variability of X. One of such measure is the variance:

Variance of a Discrete Random Variable

$$Var(X) = \sigma^2 = \sum_{x} (x - \mu)^2 f(x)$$

 Note that *x* – μ implies how far a particular value *x* of the random variable is from the expected value μ.

Example 1 cont'd. Calculate Variance

X	f(x)
0	0.1
1	0.4
2	0.3
3	0.2

- We know that $E(X) = \mu = 1.6$.
- At first we need to calculate x μ for each x. Then, we square each number and multiply f(x) to that number and sum up all numbers.

Example 1 cont'd. Calculate Variance

$$\sigma^{2} = Var(X) = \sum_{x} (x - \mu)^{2} f(x)$$

= $(0 - 1.6)^{2} \times 0.1 + (1 - 1.6)^{2} \times 0.4$
+ $(2 - 1.6)^{2} \times 0.3 + (3 - 1.6)^{2} \times 0.2$
= 0.84

- The higher variance, the higher variability of X.
- With μ and σ^2 , we can summarize the central location and variability of *X*.
- It is **IMPORTANT** to notice that μ is NOT the *sample* mean and σ^2 is NOT the *sample* variance.

Standard Deviation of a Random Variable

Standard Deviation of a Random Variable

$$\sigma = \sqrt{\sigma^2} = \sqrt{Var(X)}$$

- In words, standard deviation of a random variable is the square root of the variance of that random variable.
- Standard deviation has the same unit as the mean/expected value.
- Hence, standard deviation tells us how far the values of the random variable is from the mean/expected value in general.

Expected Value/Mean of a general function g(X)

Expected Value of a function g(X)

$$E[g(X)] = \sum_{x} g(x)f(x)$$

Example, Second Moment, or $E(X^2)$

$$E(X^2) = \sum_{x} x^2 f(x)$$

 ・・・・
 ・・ミト・ミト ミックへで 40/71

Useful Property 1: Linearity of the Expected Values

Expected value of a linear function of X

Let *Y* be a linear function of X. i.e. Y = a + bX, where *a* and *b* are constants. Then,

$$E(Y) = E(a + bX) = a + bE(X)$$

Proof of property 1

$$E(Y) = E(a + bX) = \sum_{x} (a + bx)f(x)$$
$$= \sum_{x} (af(x) + bxf(x))$$
$$= \sum_{x} af(x) + \sum_{x} bxf(x)$$
$$= a \sum_{x} f(x) + b \sum_{x} xf(x)$$
$$= a + bE(X)$$

Useful Property 2: Variance of a linear function of X

Variance of a linear function of X

Let *Y* be a linear function of X. i.e. Y = a + bX where *a* and *b* are constants. Then,

$$Var(Y) = Var(a + bX) = b^2 Var(X)$$

So, note that Var(constant) = 0

Proof of property 2

$$Var(Y) = Var(a + bX) = E[\{a + bX - E(a + bX)\}^2]$$

= $E\{a + bX - a - bE(X)\}^2]$
= $E[\{b(X - \mu\}^2]$
= $E[b^2\{X - \mu\}^2]$
= $b^2E[(X - \mu)^2]$
= $b^2Var(X)$

Useful Property 3: Variance

Another formula to calculate Variance

$$Var(X) = \sigma^2 = E(X^2) - \mu^2$$

In words, Variance (X) = second moment – mean squared

Proof of property 3

$$Var(X) = \sum_{x} (x - \mu)^{2} f(x) = \sum_{x} (x^{2} - 2\mu x + \mu^{2}) f(x)$$

$$= \sum_{x} (x^{2} f(x) - 2\mu x f(x) + \mu^{2} f(x))$$

$$= \sum_{x} x^{2} f(x) - \sum_{x} 2\mu x f(x) + \sum_{x} \mu^{2} f(x)$$

$$= \sum_{x} x^{2} f(x) - 2\mu \sum_{x} x f(x) + \mu^{2} \sum_{x} f(x)$$

$$= E(X^{2}) - 2\mu E(X) + \mu^{2} \times 1$$

$$= E(X^{2}) - \mu^{2}$$

or

$$= E(X^{2}) - [E(X)]^{2}$$

Outline

Random Variables

2 Discrete Probability Distributions

3 Expected Value, Variance, and Standard Deviation

4 Some Special Discrete Distn's

Some Popular Discrete Probability Distributions

- Depending on how we define a random variable *X* and what kinds of experiment we have, we have infinitely many discrete probability distributions.
- However, there are several discrete probability distributions that are commonly used.
- Here, we will consider Binomial Probability Distribution and Poisson Probability Distribution.

Binomial Experiment

A Binomial Experiment is a multiple-step experiment such that

- The experiment consists of a sequence of n identical trials.
- Two outcomes are possible on each trial. So, we will refer to one outcome as a *success* and the other as a *failure*.
- The probability of a success, denoted by p, does not change from trial to trial. (Hence, the probability of a failure is 1 - p for each trial.)
- The trials are independent.
 - Each trial is called a Bernoulli trial or binomial trial. A Bernoulli trial always has two possible outcomes, *S* or *F*. (e.g. toss a coin).
 - In a binomial experiment, our interest is the number of successes occurring in the *n* trials.

Example 1

The experiment of tossing a coin 5 times. Our interests is the total number of H.

- 1. This experiment consists of a sequence of 5 identical trials: Each trial involves the tossing of one coin.
- 2. Two outcomes are possible for each trial: *H* or *T*. Define *H* as *Success* and *F* as *Failure*.
- 3. The probability of a head/success is the same 0.5 for each trial.
- 4. The trials or tosses are independent because the outcome on any one trial is not affected by what happens on other trials.

Thus, this experiment is a binomial experiments.

Example 2

Consider an insurance salesperson who visit 10 families to sell the insurance. If he can sell an insurance policy to a family successfully, we consider the outcome as *Success*. From the past experience, he knows that probability that a randomly selected family will purchase an insurance policy is 0.40. Our interest is the total number of insurance policies that he sold.

- 1. This experiment consists of 10 identical trials (Visiting a family)
- 2. There are only two outcomes, *Success* (the family purchase the insurance) or *Failure* (the family doesn't purchase the policy).
- 3. The probability of a purchase is p = 0.4 and are assumed to be the same for each sales call.
- 4. The trials are independent because the families are randomly selected.

Exercise

a) Consider the following experiment.

We toss a coin, roll a die, and toss a coin again. Is this experiment a binomial experiment? Explain.

b) Consider the following experiment.

We have a special coin that has the following property. Once a coin landed with H(or T), it is more likely that we have H(or T) in the next time. Using this coin we conduct the experiment of tossing this coin 3 times. Is this experiment a binomial experiment? Explain.

Binomial Distribution

We say our random variable X follows binomial distribution if

- we have a binomial experiment, AND
- 2 X is defined by the number of *Success* in that experiment.

If X follows a binomial distribution,

we can calculate Prob(X = x) with f(x), where f(x) is the binomial probability function. Then, what is f(x)? How f(x) looks like?

The Binomial Probability Function

The Binomial Probability Function

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x},$$

where n is the total number of trials in the experiment, and x is the number of *Success* in the experiment.

- Thus, *f*(*x*) gives us the probability that the number of *Success* is equal to *x*.
- e.g. Suppose that we have n = 5 and p = 0.4. The probability that the number of *Success* is 3 is:

$$P(X=3) = f(3) = {\binom{5}{3}}(0.4)^3(1-0.4)^{5-3} = {\binom{5}{3}}(0.4)^3 \times (0.6)^2$$

(日)

Example. Selling insurance to 3 families

Let's consider simpler version of example 2. Instead of visiting 10 families, let us suppose we visit 3 families.

We will define the outcome that a family buy the insurance as S and the outcome that a family does not buy it as F.

The probability that a family buys the insurance is 0.40, i.e. p = 0.4.

Let's define X = the number of sales after visiting 3 families.

$$X = \begin{cases} 0 & \text{if } (FFF) \text{ occurs} \\ 1 & \text{if } (SFF), (FSF), \text{ or } (FFS) \text{ occurs} \\ 2 & \text{if } (SSF), (SFS), \text{ or } (FSS) \text{ occurs} \\ 3 & \text{if } (SSS) \text{ occurs} \end{cases}$$

Selling insurance to 3 families, cont'd

- Question: What is the probability that the salesperson can sell exactly one insurance policy successfully after visiting 3 families? ie. P(X = 1)?
- We see that the experiment is binomial experiment with n = 3, p = 0.4. Our interest is to calculate P(X = 1) = f(1).
- Now let's use the formula.

$$P(X = 1) = f(1) = {3 \choose 1} (0.4)^1 (1 - 0.4)^3$$
$$= {3 \choose 1} (0.4) (0.6)^2$$

Intuition of the binomial distribution formula

- Question: What is the probability that the salesperson can sell exactly one insurance policy successfully after visiting 3 families? ie. P(X = 1)?
- X = 1 happens when either (*SFF*), (*FSF*) or (*FFS*) happens.
- Hence, *P*(*X* = 1) is

$$P(X = 1) = P((SFF) \text{ or } (FSF) \text{ or } (FFS))$$

= $P(SFF) + P(FSF) + P(FFS)$

To calculate P(X = 1), we need to calculate P(SFF), P(FSF) and P(FFS).

Intuition of the binomial distribution formula

• First, look at *P*(*SFF*).

$$P(SFF \text{ occurs}) = P(trial_1 = S \text{ and } trial_2 = F \text{ and } trial_3 = F)$$

= $P(trial_1 = S) \cdot P(trial_2 = F) \cdot (trial_3 = F)$
= $(0.4)(0.6)(0.6)$
= $(0.4)(0.6)^2$

- We can immediately notice that P(SFF) = P(FSF) = P(FFS).
- Thus, we have

$$P(X = 1) = Prob(SFF) + Prob(FSF) + Prob(FFS)$$

= 3 × (0.4)(0.6)²

So, $(0.4)(0.6)^2$ is the probability of a particular sequence of trial outcomes with 1 success in 3 trials.

58/71

<ロ> <四> <四> <四> <三> <三> <三> <三

59/71

Exercise 6

Consider a binomial experiment with n = 10 and p = 0.10.

- a. Compute f(0)
- b. Compute f(2)
- c. Compute $P(X \le 2)$.
- d. Compute $P(X \ge 1)$.

Expected Value and Variance for the Binomial Distribution

- Recall that $E(X) = \sum xf(x)$, where x is a possible value of X.
- Also Recall that $Var(X) = \sum (x \mu)^2 f(x)$, where x is a possible value of X.
- We can use this to calculate the True Mean and Variance of *X* when *X* follows a binomial distribution with (n, p).

Expected Value for the Binomial Distribution

• We know f(x) for the binomial distribution with (n, p).

$$f(x) = C_x^n p^x (1-p)^{n-x},$$

Thus, the True Mean can be calculated as follows.

$$E(X) = \sum_{x \to C_x^n} x \times C_x^n p^x (1-p)^{n-x}$$

= $1 \times C_1^n p^1 (1-p)^{n-1} + 2 \times C_2^n p^2 (1-p)^{n-2} + \dots + n \times C_n^n p^n (1-p)^{n-n}$

The above complicated expression can be simplified and we have

$$E(X) = np$$

Variance for the Binomial Distribution

The variance of a binomial random variable also can be calculated as follows.

$$Var(X) = \sum (x - np)^2 \times C_x^n p^x (1 - p)^{n - x}$$

= $(1 - np)^2 \times C_1^n p^1 (1 - p)^{n - 1} + (2 - np)^2 \times C_2^n p^2 (1 - p)^{n - 2}$
 $+ \dots + (n - np)^2 \times C_n^n p^n (1 - p)^{n - n}$

The above complicated expression can be also simplified and we have

$$Var(X) = np(1-p)$$

<ロ> <四> <四> <四> <三< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< =< =< =< =< =< =< =< =< =< =< =

Expected Value and Variance for the Binomial Distribution

Expected Value and Variance for the Binomial Distribution

E(X) = np

$$Var(X) = np(1-p)$$

- Every Binomial Distribution is characterized by two numbers, the total number of trial, *n*, and the probability of *Success* in each trial *p*.
- Given *n* and *p*, we can easily calculate the mean and variance of *X* that follows the binomial distribution.

Exercise 6 cont'd

Consider a binomial experiment with n = 10 and p = 0.10.

- e. Compute E(X)
- f. Compute Var(X).

Poisson Distribution

- Sometimes, we are interested in the number of occurrences of an event within a time period or a space.
- That is, we may be interested in
 - e.g. the number of cars that arrived at a car wash place in one hour.
 - e.g. the number of leaks in 100 miles of pipeline.
 - e.g. the number of accidents in 10 miles of highway.
- The Poisson distribution is the most popular used distribution when one wants to study problems such as above.

Assumptions of the Poisson Distribution. Poisson Experiment

Poisson Experiment

- The probability of an occurrence is the same for any two intervals of equal length.
- The occurrence or nonoccurrence in any interval is independent of the occurrence or nonoccurrence in any other interval.

Example

 We are interested in the number of cars arriving at drive-through window of a restaurant during a 15-minute period. We somehow assume/agree that the two above requirements are satisfied in general.

The Poisson Probability Function

The Poisson Probability Function

$$f(x) = \frac{\mu^x e^{-\mu}}{x!},$$

where f(x) is the probability that the number of occurrence is equal to x in an interval,

 μ is the expected value (or mean) of the number of occurrences in an interval,

e = 2.71828.

• Sometime μ is referred to as the arrival rate.

The mean and variance of the Poisson distribution

If *X* follows the Poisson distribution,

 $E(X) = Var(X) = \mu$

Example

Consider the example of counting the number of cars that arrive at the drive-up teller window of a bank in 15-min. period. Suppose that an analysis of data from past shows that the average number of cars arriving in 15-min. is 10. (i.e. $\mu = 10$). Thus, the following probability function is applied for this case.

$$f(x) = \frac{10^x e^{-10}}{x!}$$

• What is *E*(*X*)?

• What is *Var*(*X*)?

Example cont'd

- What is the probability that the number of cars arriving in 15-min. period of time is equal to 5?
- The above question is the same as "what is Prob(X = 5) = f(5)?. Thus, the answer will be

$$Prob(X = 5) = f(5) = \frac{10^5 e^{-10}}{5!} = 0.0378$$

・ロト ・四ト ・ヨト ・ヨト

69/71

Example cont'd

- Sometime we may be interested in the number of cars arriving in a different time period instead of 15-min.
- We can still use the above probability function with a small change.
- Note that the average number of cars arriving in 15-min. is 10.
- Thus, the average number of cars arriving in 1-min. is $\frac{10}{15} = \frac{2}{3}$.
- Suppose we are interested in the number of cars arriving in 3-min.
- Then, the average number of cars arriving in 3-min. is $\frac{2}{3} \times 3 = 2$.

Example cont'd

- Thus, when we are interested in the number of cars arriving in 3 min. We will use 2 as our μ in the Poisson probability distribution function.
- Finally, define *Y* as the number of cars arriving in 3 min. Then, we have

$$f(y) = \frac{2^{y}e^{-2}}{y!} = 0.0378$$

• Then, the probability that the number of cars arriving in 3 min. is equal to 3 is

$$Prob(Y=3) = f(3) = \frac{2^3 e^{-2}}{3!} = 0.541$$