BNAD/ECON/MGMT 276 Lecture 5 Discrete Probability Distributions Exercises

Phuong Ho

May 20, 2016

(日)

1/16

Outline

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose we have the probability distribution for the random variable *X* as follows.

X	f(x)
20	.20
25	.15
30	.25
35	.40

- Is this probability distribution valid? Explain.
- What is the probability that X = 30.
- What is the probability that X is less than or equal to 25?
- What is the probability that X is greater than 30?
- What is the expected value (or mean) of X?
- What is the variance of X?

A psychologist determined that the number of sessions required to obtain the trust of a new patient is either 1, 2, or 3. Let *X* be a random variable indicating the number of sessions required to gain the patient's trust. The following probability function has been proposed.

$$f(x) = \frac{x}{6}$$
 for $x = 1, 2$, or 3.

- a. Is this probability function valid? Explain.
- b. What is the probability that it takes exactly two sessions to gain the patient's trust?
- c. What is the probability that at least two sessions to gain the patient's trust?

There is a random variable *X* which has the following probability function.

	a()	= ()
X	f(x)	F(x)
1	0.5	
2	0.2	
3	0.2	
4	0.05	
5	0.05	

- Construct the cumulative probability function, *F*(*x*), in the above table.
- Calculate E(X) and Var(X).

Exercise 3 Cont'd

Now we are interested in a random variable Y = 1 + 2X.

- What is the probability that Y = 11?
- Calculate *E*(*Y*) and *Var*(*Y*)

Exercise 4: A Bernoullie Process

Consider the probability function for a random variable *X* in the following. 1 stands for *Success* and 0 stands for *Failure*.

X	f(x)
0	0.4
1	0.6

- Calculate the expected value (mean) of X.
- What is the probability of *Success*?
- Calculate the variance of X.

a) consider the following experiment.

We toss a coin, roll a die, and toss a coin again. Is this experiment a binomial experiment? Explain.

b) consider the following experiment.

We have a special coin that has the following property. Once a coin landed with H(T), the probability that we have H(T) in the next time increases. With this coin we conduct the experiment of tossing this coin 3 times. Is this experiment a binomial experiment? Explain.

Consider a binomial experiment with n = 10 and p = 0.10.

- a. Compute f(0)
- **b.** Compute f(2)
- c. Compute $P(X \le 2)$.
- d. Compute $P(X \ge 1)$.
- e. Compute E(X)
- f. Compute Var(X).

- d. What is the mean of X?
- e. What is the variance and standard deviation of X?

In San Francisco, 30% of worker take public transportation daily (USA Today, December 21, 2005).

- a. In a sample of 10 workers, what is the probability that exactly three workers take public transportation?
- b. In a sample of 10 workers, what is the probability that at least three workers take public transportation?

Military radar and missile detection systems are designed to warn a country of an enemy attack. A reliability question is whether a detection system will be able to identify an attack and issue a warning. Assume that a particular detection system has a .90 probability of detecting a missile attack. Use the binomial probability distribution to answer the following questions.

- a. What is the probability that a single detection system will detect an attack?
- b. If two detection systems are installed in the same area and operate independently, what is the probability that at least one of the systems will detect the attack?

Exercise 8 cont'd

- c. If three systems are installed, what is the probability that at least one of the systems will detect the attack?
- d. Would you recommend that multiple detection systems be used? Explain.

A university found that 20% of its students withdraw without completing the introductory statistics course. Assume that 10 students registered for the course.

- a. Compute the probability that two or fewer will withdraw.
- b. Compute the probability that at least 3 will withdraw.
- c. Compute the expected number of withdrawals.

Consider a Poisson distribution with $\mu = 3$..

- a. Write the appropriate Poisson probability function.
- b. Compute f(2).
- c. Compute $P(X \ge 2)$.

An average of 15 aircraft accident occur each year (*The World Almanac and Book of Facts, 2004*).

- a. Compute the mean number of aircraft accident per month.
- b. Compute the probability that there is no accidents during a month.
- c. Compute the probability that there is exactly one accident during a month.
- d. Compute the probability that there is more than one accident during a month.